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Abstract. The recent rise in both popularity and performance of large
language models has garnered considerable interest regarding their ap-
plicability to education. Technologies like ChatGPT, which can engage
in human-like dialog, have already disrupted educational practices given
their ability to answer a wide array of questions. Nevertheless, integrat-
ing these technologies into learning contexts faces both technological and
pedagogical challenges, such as providing appropriate user interfaces and
configuring interactions to ensure that conversations stay on topic. To
better understand the potential large language models have to power
educational chatbots, we propose an architecture to support educational
chatbots that can be powered by these models. Using this architecture,
we created a chatbot interface that was integrated into a web application
aimed at teaching software engineering best practices. The application
was then used to conduct a case study comprising a controlled experiment
with 26 university software engineering students. Half of the students in-
teracted with a version of the application equipped with the chatbot,
while the other half completed the same lesson without the chatbot.
While the results of our quantitative analysis did not identify significant
differences between conditions, qualitative insights suggest that learners
appreciated the chatbot. These results could serve as a starting point to
optimize strategies for integrating large language models into pedagogi-
cal scenarios.

Keywords: Educational Chatbots - Prompting - GPT-3 - Large Lan-
guage Models - Software Engineering Education - Digital Education.

1 Introduction

As large language models (LLMs) become more accessible through publicly avail-
able application programming interfaces (APIs), the potential these models have
to support a wide variety of pedagogical scenarios is becoming evident. One
obvious application of these models is to power educational chatbots. Indeed,
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researchers have advocated for the use of LLMs to support more natural con-
versation and overcome the limitations of rule-based systems or systems based
on limited training data [15]. However, several challenges limit the integration
of LLM-powered chatbots into educational contexts. These challenges include—
among others—providing the appropriate user interfaces and configuring the
LLMs to ensure that the generated text is aligned with the pedagogical scenario
in which the educational chatbots are deployed [11].

To help address these challenges, we designed an architecture that developers
in education can follow to create interfaces that educators can use to configure
and deploy LLM-powered chatbots for use in digital education. At its core, this
architecture considers chatbots as configuration objects that define the user in-
terface elements that will be shown to the learner as well as the prompt that will
be sent to the LLM. Following this architecture, we created a chatbot interface
that was embedded in a web application designed to execute and review snippets
of code. We used this application in a case study consisting of a between-subjects
controlled experiment with 26 software engineering students. While 13 students
completed a lesson on programming best practices supported by the chatbot, the
other 13 students completed the same lesson without support from the chatbot.
Our mixed-method analysis of the data from this experiment focused on how
the chatbot affected five aspects of the learning experience. A sixth aspect—
conversation—was applicable only to the treatment group that was exposed to
the chatbot.

Given the increasing interest in the applications of powerful natural language
processing (NLP) technologies, our study is timely and relevant to both research
and practice. Our architecture can serve developers in education looking to in-
tegrate chatbots into digital education platforms, while findings from our case
study can guide researchers and educators in conducting future empirical studies
and incorporating educational chatbots into their practice.

2 Background and Related Work

Our research is underpinned by advances in NLP methods and, in particular, by
the success of LLMs. LLMs are used for a wide array of language tasks and can
also be used to power chatbots. The most notable example is OpenAl’'s Chat-
GPT [13]. Without further configuration, this open-domain chatbot can interact
with users on diverse topics through unrestrained conversations. However, un-
derstanding how LLMs can be harnessed to create task-oriented chatbots for
specific domains is still the focus of ongoing research.

A recent position paper by Kasneci et al. [11] outlined opportunities and
challenges of incorporating LLMs into education. Among the challenges identi-
fied, the authors highlight (i) the possible biases that LLMs can perpetuate and
amplify, (ii) the need for open educational resources (OERs) to guide educators
on how to access and use these models, (iii) the need to ensure data privacy and
security, and (iv) the lack of adaptability to align the models with the objectives
of individual learners and educators. Addressing these challenges could open the
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door to more powerful applications of LLMs to education. Kasneci et al. also
underlined the need to ensure that the interfaces used to interact with these
models are aligned with the needs of different types of learners (e.g., adapting
for age-related constraints and accessibility requirements).

An important factor to consider when assessing the applicability of these
LLMs to education is the process through which they can be configured for spe-
cific tasks, such as generating the responses that an educational chatbot can
use in its interactions. This process is supported by prompting, which consists
in providing the model with instructions and a few examples of how it should
respond to a query. Finding the most appropriate prompts is a complex task
and using inefficient prompting strategies can result in worse results than using
no prompt at all [14]. Identifying optimal prompts—or prompt engineering—is
an active area of research in NLP. Recent work has focused on automating the
generation of these prompts [9], understanding the biases that prompting can
be susceptible to [18], and providing the appropriate infrastructure to generate
prompts [2]. Nevertheless, there is little guidance for performing prompt engi-
neering with domain-specific applications in mind, as is the case with educational
chatbots.

These gaps in the research motivate the design of our architecture, which
aims to help developers in education provide interfaces for educators to easily
configure and deploy chatbots within digital education platforms.

3 Design

Our architecture—depicted in Fig. 1—consists of six components that interact
through three main processes. These components are loosely coupled and ab-
stractly defined in order to allow developers to adapt them as needed for the
particular constraints that might be present in different digital education plat-
forms. In this section, we detail the functionalities provided by each component
and the processes they support.

3.1 Components

The architecture defines six components that interact to facilitate the integration
of chatbots powered by LLMs into educational contexts: (1) digital education
platform, (2) host application, (3) chatbot, (4) API adapter, (5) storage, (6) ex-
ternal API.

1. Digital Education Platform: The learning activity takes place on a dig-
ital education platform. This platform should provide a way to differentiate
content that is visible to educators from content that is visible to learn-
ers. Using a dedicated view, educators should be able to create a learning
activity by curating multimedia content, such as images, text, and videos.
Most importantly, educators should be able to select interactive learning re-
sources (e.g., web applications) that can host chatbots. That is, chatbots are
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Fig. 1. Our design comprises six loosely coupled components (labeled 1-6) that interact
through three main processes (labeled A-C).

not directly embedded in the digital education platform, but in interactive
applications that can be added to the learning activity. We refer to these
applications as host applications.

. Host Application: The host application is an interactive learning resource

that can be embedded in digital education platforms to support learner in-
teractions with chatbots. A host application exposes a configuration panel
for educators to activate and configure chatbots. Once activated, these chat-
bots are visible to learners interacting with the application. For this, the host
application should provide an interface through which learners can commu-
nicate with the chatbot (e.g., a forum, chat box, or message thread). How
a chatbot interacts with learners is entirely defined by its configuration and
the interaction affordances provided by the host application.

. Chatbot: A chatbot in our architecture is not an application by default,

but a component that can be activated and configured within an application.
This increases the portability and customizability of a chatbot, which can be
developed independently from the host application(s) it can be embedded
in, and by educators without technical backgrounds. Hence, the chatbot
can be considered to be an OER that is defined by its configuration. This
configuration consists of a name, an avatar, a scope (i.e., who can see the
messages sent by individual students), a prompt (which is sent to the LLM),
and a cue (i.e., a message displayed to learners to invite them to interact).

API Adapter: The API adapter is embedded in the digital education plat-
form and serves to communicate with the API exposed by the LLM provider.
This adapter can also be deployed outside of a single digital education plat-
form, thus serving multiple platforms. Given that adapters interface with
APIs external to the digital education platform, they can also provide fall-
back responses in case the APIs are not accessible. Nevertheless, adapters
are stateless and should only serve to handle requests from host applica-
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tions, thus delegating the storage of any information to the digital education
platform.

Storage: Two types of data are stored by the digital education platform:
(i) application data and (ii) application actions. Application data refer to
the content of a learner’s interaction with the chatbot, including both the
messages provided by the learner and the chatbot’s responses. Application
actions refer to activity traces of how a learner interacts with the conver-
sational interface in which the chatbot is embedded, including keystrokes,
clicks, and other events that can be captured by the browser. These actions
can serve to deliver learning analytics and provide a more nuanced depiction
of how learners interact with chatbots.

External API: Finally, our architecture requires an LLM that is accessi-
ble through a public API in order to generate the responses to the queries
provided by the learners.

3.2 Process

There are three main processes that define the interactions between the afore-
mentioned components. These processes are outlined below.

(A)

4

Configure: Educators should be able to configure the chatbot through the
educator interface of the host application. The chatbot’s configuration is
kept in the storage component and allows for the personalization of the
chatbot integration for each educator’s particular needs. This configuration is
also seamlessly reproducible, allowing educators to quickly replicate chatbot
integrations across learning activities.

Interact: The core process defined by our architecture is how learners in-
teract with the chatbot. When a learner interacts with the chatbot, the host
application’s learner interface connects to an external LLM API provider
through the API adapter component hosted in the digital education plat-
form’s backend.

Persist: As interactions take place, the host application ensures that the
outcomes of these interactions are persisted on the digital education plat-
form. These outcomes mainly concern the conversation between the chatbot
and the learner (and any related content such as emoji reactions) but also
include any actions that the learner might take using the chatbot interface.
These actions can then be used to provide learning analytics.

Methodology

To test the applicability of our architecture in practice, we implemented a chat-
bot integration following our design and conducted an evaluation focused on
addressing one main research question:

How does incorporating a large language model-based chatbot to support
a lesson on software engineering best practices affect the learning expe-
rience?
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We conducted this study in January 2023. This evaluation took the form of
a case study consisting of a between-subjects controlled experiment comprising
one control (no chatbot) and one treatment (chatbot) condition. For both condi-
tions, we analyzed five aspects of the learning experience: (i) short-term learning
gains, (ii) engagement, (iii) self-reflection on the learning experience, (iv) feed-
back regarding the lesson, and (v) wusability. For the treatment group, we also
analyzed a sixth aspect (vi) conversation, which focused on the exchanges the
learners had with the chatbot. The small-scale nature of our study allowed us to
conduct a mixed-method analysis. In this section, we present our methodology.

4.1 Scenario

To ensure ecological validity, our evaluation took place in a formal education
setting. As part of their coursework, students completed an in-class online les-
son consisting of an ungraded 45-minute exercise. The exercise comprised a code
review notebook [5] covering JavaScript code style standards. Code review note-
books allow educators to scaffold pedagogical scenarios that introduce the code
review process to learners through code snippets, following a template resem-
bling computational notebooks. More specifically, we started by introducing the
concept of linting code, which involves the use of static analysis tools to de-
tect issues in software [10]. The lesson then covered ESLint [17], a linter for
JavaScript [16], as well as the Airbub JavaScript Style Guide [1], a popular con-
figuration for ESLint. In this section, we outline the technological context and
pedagogical scenario used in our evaluation.

Technological Context In this section, we describe how we implemented our
architecture to provide the technological context for our experiment. OQur chat-
bot was integrated into the Graasp digital education platform [6] through Code
Capsule as the host application. Code Capsule is an application that allows
learners to both review and execute code (see Fig. 2). This application supports
the integration of chatbots when used to review code.

The chatbot that was integrated into Code Capsule was configured as follows.
To remain gender-neutral and maximize consistency with Graasp, we named
our chatbot Graasp Bot and represented it with a robot avatar. All chatbot
interactions were scoped at the individual level, so students could only see their
own interactions and not those of their peers. The prompts for each code snippet
were only visible to the educator via Code Capsule’s configuration panel and
were prepended to the conversation as learners interacted with the chatbot.
These prompts were defined following the pattern below?>:

The following is a conversation between a chatbot and a student dis-
cussing the correction of an exercise about linting, ESLint, code styling,
and best practices in JavaScript. After each response, the chatbot gives
the student one or two options to continue the conversation.

3 Note that placeholders are presented between angle brackets (<>).
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Chatbot: <EXPLANATION OF WHAT IS WRONG IN THE CODE SNIPPET>. So,
I would change the following line of code:

<INCORRECT CODE>

To the following:

<CORRECT CODE>

<QUESTION ASKING THE STUDENT IF THEY UNDERSTAND THE DIFFERENCE>

Student: OK. <QUESTION ASKING THE CHATBOT SOMETHING RELATED TO
THE ISSUE>

Chatbot: <ANSWER>. Do you want me to provide you with an eram-
ple of <THE ISSUE>?

Student: No, that’s OK. Thanks! Any other issues I should be aware
of ?

import itertools

from functools import partial

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker

from cycler import cycler

def filled hist(ax, edges, values, bottoms=None, orientation='v',

**kwargs) :

Juan Carlos Farah
less than 5 seconds ago

What does skkwargs do?

Draw a histogram as a stepped patch.

Parameters
ax : Axes

The axes to plot to

Fig. 2. The Code Capsule application can be used to write, execute, and review code.
The code used in this example has been adapted from the Python Matplotlib library’s
documentation [7].
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To invite users to interact with the chatbot, we showed them a message that
was embedded as a comment in the code snippet featured on Code Capsule. We
refer to these messages as cues. Cues were dependent on each code snippet in
which the chatbot was embedded. All of these cues followed the same pattern
(see Fig. 3). This pattern consisted of (i) an explanation of an issue present in
the code snippet, (ii) a suggestion on how to fix the issue, and (iii) a question
asking students whether they agreed with some facet of the proposed solution.

Destructuring

With ES6, a new syntax was added for creating variables from an array index or object property, called destructuring. Destructuring saves you from creating temporary references for
those properties and from repetitive access of the object. Repeating object access creates more repetitive code, requires more reading, and creates more opportunities for mistakes.
Destructuring objects also provides a single site of definition of the object structure that is used in the block, rather than requiring reading the entire block to determine what is used
Variables items and name can therefore become one line using object destructuring.

const items = person.items;
2 const name = person.name;

Graasp Bot

just now
Using the new ES6 destructuring syntax we can reduce the number of lines of code and make it more readable.
This is how you could do it

const { items, name } = person;

Don't you think it looks better like this?

Fig.3. The cue consisted of an explanation of the issue present in the snippet, a
suggested fix, and a question asking students whether they agreed with the solution
proposed.

When students interacted with our chatbot, Code Capsule interfaced with the
external API exposed by OpenAl through an API adapter that was integrated
into Graasp. The adapter was configured to use the GPT-3 text-davinci-003
model, with a temperature parameter of 0.9 (higher values make completions
of the same prompt more random), a presence_penalty of 0.6 (higher values
penalize new tokens if they have already appeared), a top_p parameter of 1
(always returning the best completion), and the maximum number of tokens to
be included in the chatbot response fixed at 150.

Pedagogical Scenario The lesson used in this experiment followed the Fizer
Upper pedagogical pattern [3]. For coding exercises, this pedagogical pattern
consists of presenting students with code “that is generally sound but [contains]
carefully introduced flaws [that] can both introduce a complex topic early and
serve as a way to introduce error analysis and correction” [3]. In our case, we
structured the lesson over 10 phases, which students were meant to navigate se-
quentially (see Fig. 4). Students were first introduced to the lesson (Phase 1) and
then asked to complete a short exercise that served as a pre-test to gauge their
knowledge of JavaScript code style standards (Phase 2). Phases 3 (Introduction)
and 4 (ESLint) covered the concept of code linting and ESLint specifically, while
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Phases 5 (Styling) and 6 (Best Practices) presented examples of code style stan-
dards that students should follow when writing JavaScript code. In these phases,
10 code snippets were included using Code Capsule alongside a textual explana-
tion of the issue present in the snippet. For students in the treatment condition,
the code snippet also included a cue from Graasp Bot, as shown in Fig. 3. Phase 7
(Exercise) consisted of an exercise that served as a post-test, while Phase 8 (So-
lutions) presented the solutions to the exercise and asked the students to reflect
on their performance in the exercise. For students in the treatment condition,
Phase 8 also included explanations presented by Graasp Bot. Phase 9 (Chat-
bots) was also different between the control and treatment conditions. On the
one hand, students in the control condition were asked to imagine how they
would integrate chatbots into the exercise and to provide sample dialogs that
they would envision having with the chatbot. On the other hand, students in
the treatment condition were asked to report on their experience interacting
with the chatbot. Finally, Phase 10 (Conclusion) served as a conclusion to the
exercise and provided a link to a questionnaire.

g Graasp (&b e IV ®) EstintLesson ‘{) Juan Carlos Farah
~ m ESLint Lesson @ Trailing Comma
™ - Getting Started
L Introduction Trailing commas simplify adding and removing items to objects and arrays, since only the lines you are modifying must be touched. This also improves the
™ M ESLint clarity of diffs when an item is added or removed from an object or array, as shown in the image below.
m @ Styling
m [ Best Practices
m ' Exercise 1 return {
=, Solutions 2 summary: messages,
= & Chatbots 3 numPeople: messages.length
™ Conclusion
e Graasp Bot
just now

Having a trailing comma simplifies adding and removing items from objects and arrays

If we want to add a new item after line 3 we would have to modify 2 lines. First, add a comma on line 3 and then add
our item on a new line.

By using a trailing comma, we only have to insert our new line and we are done. We could write it like this:

return {
summary: messages,
nunPeople: messages. length,

¥

Does the use of trailing comma in JavaScript make sense to you?

Fig. 4. The lesson used in this study consisted of a code review notebook aimed at
teaching software engineering best practices and included the ten phases shown in the
sidebar. In this figure, we highlight the Styling phase and show the explanation block—
including a cue from the chatbot—recommending the use of trailing commas.

4.2 Participants

We recruited 28 third-year bachelor students taking part in a course on human-
computer interaction at the School of Engineering and Architecture of Fribourg,
Switzerland. A total of 26 students—25 male, 1 female—completed the study.
Students were informed that this was an ungraded, optional exercise. To encour-
age participation, students were given extra credit for completing the activity.
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4.3 Instruments

Short-term learning gains were operationalized based on the learner’s perfor-
mance in the pre- and post-tests by calculating the difference between both
tests. These gains could range from —100% to 100%. Engagement was measured
by calculating the total amount of time spent in each phase during the one-hour
time frame that was allocated for the lesson. Self-reflection and feedback were
respectively operationalized through the following two open-ended questions:
(i) Did you manage to find all of these [issues]? If not, which ones did you miss?
Did you find any of them particularly tricky/helpful? and (ii) What did you think
about this lesson? Any comments, suggestions, or feedback?. A second feedback
question was relevant only to the students in the treatment group: In a few
phrases, describe your experience interacting with the chatbot used in this activ-
ity. What did you like about it? What could be improved? This second question
was only used for our qualitative analysis of the feedback aspect. Usability was
measured with the User Experience Questionnaire (UEQ), a standard instru-
ment that measures usability across six dimensions [12]. Finally, for students in
the treatment group, our analysis included the conversations students had with
the chatbot. This qualitative analysis focused on (i) whether conversations were
on topic, (ii) how long the conversations were, (iii) how natural the conversations
were, and (iv) what responses were elicited by the different types of cues.

4.4 Data Analysis

We applied both descriptive and inferential statistics to our quantitative data,
reporting the means (Z), medians (&), standard deviations (s, ), minima (Zmin),
and maxima (Zmax), as well as the results of ¢-tests for independent samples
comparing across the two conditions. To perform sentiment analyses on stu-
dents’ self-reflection and feedback responses, we used VADER [8], which assigns
a sentiment score ranging from —1 (negative sentiment) to +1 (positive senti-
ment). The results of the UEQ were analyzed using its data analysis toolkit [12].
Finally, open-ended responses were analyzed using qualitative methods, follow-
ing line-by-line data coding [4].

5 Results

In this section, we present our results with respect to the aspects studied.

5.1 Learning Gains

The mean learning gains were Z = 0.429 (Z = 0.369, s, = 0.212, xp;;, = 0.115,
ZTmax = 0.746) in the control condition and z = 0.430 (Z = 0.492, s, = 0.243,
Tmin = —0.146, Tpmax = 0.692) in the treatment condition. These results—
illustrated in Fig. 5—show that both conditions led to, on average, positive
learning gains for students, with all students except one achieving positive learn-
ing gains. While the median learning gain was higher in the treatment condition,
a t-test did not show a significant difference between conditions.
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Learning Gains by Condition
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Fig. 5. Learning Gains

5.2 Engagement

On average, learners in the treatment condition spent a total of Z = 41.7 minutes
(z = 37.8, $p = 9.31, Zmin = 29.4, Zmax = 59.5) to complete the lesson, while
learners in the control condition did so in Z = 40.1 minutes (Z = 36.5, s, = 10.4,
Tmin = 22.2, Tmax = 55.2). There were no significant differences in the time spent
by students either overall (see Fig. 6) or across the 10 phases that constituted
our lesson (see Fig. 7).

Group

Time Spent (minutes)

Overall Time Spent by Condition

Control 4

Treatment

beo ® . F— .

——

25 30 35 40 45 50 55 60
Time Spent (minutes)

Fig. 6. Engagement

Instructions

Group
Control

B Treatment

Getting Introduction ESLint Styling Best Exercise Solutions Chatbots Conclusion
Started Practices

Phase

Fig. 7. Time Spent per Phase
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5.3 Self-Reflection

Of the 26 students that participated in the study, 22 students (10 control,
12 treatment) provided responses to the self-reflection question. The sentiment
analysis performed on student responses to the self-reflection question did not
produce any significant differences between conditions. Nevertheless—as shown
in Fig. 8—the distribution of scores in the treatment condition had a more
positive tendency than the scores in the control condition. Specifically, the re-
sponses of the students in the control group resulted in a mean sentiment score
of z = —0.128 (z = —0.0766, s, = 0.454, Tmin = —0.743, Tmax = 0.757),
while those in the treatment condition resulted in a mean score of z = 0.0297
(Z = 0.0386, s, = 0.423, zpin = —0.595, Tmax = 0.649).

Sentiment Analysis on Responses Capturing Self-Reflection

Control 4 |— ° l'_|

|

-038 ~0.6 ~0.4 ~02 0.0 02 0.4 0.6
Sentiment

Group

Fig. 8. Self-Reflection

Our qualitative analysis showed that responses were consistent between both
groups, with students providing short answers in which they quickly described
what they missed. All students, except five (two control, three treatment), specif-
ically listed at least one issue they missed. A typical answer reads as follows: “I
forgot a let that had to be const, a comma after the last element of an object
and a semicolon at the end of a line”.

Six students (four control, two treatment) provided more detail regarding
the issues they missed. In this case, a typical answer was: “I forgot the first
let giftList to const giftList despite seeing it for total at the end. I fell
into the trap thinking it was redeclared in the getGiftsTotal (person) function
because it had the same name”.

5.4 Feedback

Of the 26 students that participated in the study, 22 students (10 control, 12
treatment) provided responses to the feedback question. The sentiment analysis
performed on these responses did not yield any significant differences between
conditions. As shown in Fig. 9, the distribution of the scores was mostly positive
in both conditions, with only a few negative outliers. Responses from students
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in the control group resulted in a mean sentiment score of & = 0.451 (& =
0.556, s, = 0.400, Tpmin = —0.317, Tmax = 0.859), while those in the treatment
condition resulted in a mean score of T = 0.460 (Z = 0.598, s, = 0.331, Zyin =
—0.356, Zmax = 0.796).

Sentiment Analysis on Responses Capturing Feedback

Control y O ('S .o

~0.4 ~0.2 0.0 02 0.4 0.6 08
Sentiment

Group

Fig. 9. Feedback

Our qualitative analysis of the first feedback question—which concerned both
conditions—showed that all students except two (two treatment) provided a
positive comment. Codes such as good, great, fun, interesting, and helpful were
prevalent in students’ responses under both conditions. Regarding the negative
feedback, while one student provided a minor, off-topic comment regarding the
color of the user interface, the other student questioned the need for a chatbot:
“Was the chatbot REALLY necessary? This lesson needs to end on a link to a
lesson/tutorial on how to use/configure/install/firststeps/basics/... on ESLint”.

Nevertheless, four students specifically provided positive feedback regarding
their interactions with the chatbot, such as: “It was helpful and I liked the inter-
activity with a bot”. Finally, one student noted that while the interactivity and
response time provided by the chatbot were positive, the chatbot would never
replace the educator: “ESLint was interesting. It’s mice to have an answer di-
rectly to our questions. After that, it will never replace the answers of a teacher
(even if the answer is direct)”.

Furthermore, all students in the treatment group (n = 13) provided an an-
swer to the second feedback question, which specifically asked about the chatbot
and was therefore only visible to students in the treatment group. Although eight
students provided positive feedback about the chatbot, four of these comments
also included a note about how the chatbot had been “repetitive” or “asked too
many questions”. One student noted the following:

“It was nice, but sometimes repetitive. He wished me twice a great day
and when I asked how to implement something in the linter, it didn’t
show me the code. But overall, I find it ludic and it’s a nice way to learn
since we have interactions. May be interesting for children too. Maybe
less with adults.”
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Repetitiveness was also observed in the five negative comments, with stu-
dents urging the chatbot to “stop asking questions at the end” or characterizing
chatbots as “pushy salesmen”. One student provided the following constructive
comment:

“Sometimes less interaction is more. In this lesson maybe too many in-
teractions are offered and this could be at some point a bit annoying
for the user. But still if correctly dosed it may bring some value for the
user!”

5.5 Usability

Both groups rated the usability of the lesson positively. Compared to the UEQ
benchmark, in the control group, the results achieved were above average (25% of
results better, 50% of results worse) for four dimensions—attractiveness, depend-
ability, stimulation, and novelty—while they were good (10% of results better,
75% of results worse) for efficiency and excellent (in the range of the 10% best
results) for perspicuity. In the treatment group, the results achieved were above
average for stimulation, good for three dimensions—attractiveness, efficiency,
and dependability—and excellent for perspicuity and novelty.

Group
251 Control

BN Treatment

1iaa

Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty
Quality

2.0

o

n
L

Score

o
!

0.5

0

0.

=3

Fig. 10. Results of the User Experience Questionnaire (UEQ)

When comparing between conditions, however, two-sample t-tests did not
result in any significant differences across any of the usability dimensions. Nev-
ertheless, it is worth noting that the treatment condition achieved a better us-
ability score in all dimensions, except efficiency, and specifically for the novelty
dimension (p = 0.0886). These ratings are summarized in Fig. 10.



Prompting Large Language Models to Power Educational Chatbots 15

5.6 Conversation

For students in the treatment group, our analysis included a sixth aspect regard-
ing the conversations students had with the chatbot. This analysis comprised 150
conversations.

First, all conversations were on topic. Occasionally students opened up the
dialogue to cover broader subjects—such as JavaScript in general, instead of
JavaScript code style—but these topics still fell within the lesson’s scope.

Number of Messages per Conversation
(n =150 conversations)

100 4

Count

7 9 11 13 15 17 19 21 23 25
Number of Messages per Conversation

Fig. 11. Number of Messages per Conversation

Second—as shown in Fig. 11—approximately two-thirds of the conversations
comprised three messages (only one message from the student and two from the
chatbot). The other two-thirds of conversations were of length greater than or
equal to five messages (i.e., at least two messages from the student).

Third, in most conversations, learners had to ask several times for the chat-
bot to stop asking if they had any further questions (see Fig. 12). Moreover—as
mentioned above—in over two-thirds of the conversations, students did not pur-
sue the exchange with the chatbot after one reply (as evidenced by the number
of conversations comprising three messages). This means that students ignored
the follow-up question from the chatbot, resulting in an unnatural end to the
conversation.

Finally, we can divide the cues presented by the chatbot into three types:
(i) those in which the student is invited to agree or disagree with its statements
(type I, e.g., Do you agree?), (ii) those in which it asks for the student’s opinion
(type II, e.g., What do you think about... ?), and (iii) those coming after the
exercises, in which it asks students whether they were able to identify a particular



16 J. C. Farah et al.

Graasp Bot
5 months ago

Absolutely! Would you like to learn more about using ESLint to help you review your code and detect any errors?

‘ 5 months ago

not for now thanks

Graasp Bot
5 months ago

No problem! Would you like to know more about other best practices in JavaScript development?

. 5 months ago

not for now thanks

Graasp Bot
5 months ago
No worries! Is there another topic you'd like to discuss?

. 5 months ago

not for now thanks

Graasp Bot
5 months ago

Alright! Is there anything else | can help you with?

‘ 5 months ago

not for now thanks

Graasp Bot
5 months ago

No problem! Have a great day!

Fig.12. In many cases, the chatbot kept asking questions even though the learner
sought to end the exchange, as shown by the repeated messages above.

set of code style issues (type III, e.g., Did you get all of these issues?). Out of
the 15 cues, seven were of type I, three were of type I, and five were of type III.
We analyzed the format of the students’ responses for each of these types. These
can be short answers (e.g., “yes”, “no”, “OK”) or long answers, i.e., developed
and/or justified answers (e.g., “It can be disturbing at first but it’s readable t00.”).

As shown in Fig. 13, approximately three-fourths of type I questions result
in a short answer, after which most students leave the exchange (reflected in
a conversation comprising three messages). On the other hand, we notice that
about two-thirds of type II questions lead to long answers. Finally, for type III,
we notice that the answer formats are almost equally distributed. By observing
the content of these answers, we notice that short answers correspond most of
the time to students who correctly identified the issues present in the exercise,
while long answers are those of students stating their mistakes and sometimes
explaining the reasons for these mistakes or oversights.
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Question Type 1 Question Type II Question Type II1

24%
36%
46%
54%
64%
76%

short answer long answer

Fig. 13. Length of Answer by Type of Question

6 Discussion

The results of our evaluation did not surface any significant differences between
conditions for any of the five aspects considered for both conditions. However,
there are a few points that stand out and provide interesting insights into the
directions that we can explore in future work.

First, results were more positive in the treatment condition across all five as-
pects. That is, the mean learning gain was higher, students spent—on average—
more time in the lesson, were more positive in reflecting on their performance
in the post-test, provided more positive feedback, and rated the lesson higher
on the UEQ. Although we emphasize that the differences were not statistically
significant, these results offer a positive outlook for the integration of this type
of educational chatbot into digital education platforms. At a minimum, these
results show that educational chatbots following our architecture can comple-
ment pedagogical scenarios without interfering with the learning experience.
Extensions of this study with larger cohorts, alternative instruments, and longer
exposures could produce more concrete results.

Furthermore, qualitative feedback showed that, in general, learners appreci-
ated the chatbot. Of the 12 students in the treatment condition who provided
general feedback through a response to the first feedback question, five explicitly
mentioned the chatbot, and only one did so to question whether its integration
into the lesson was really necessary. Noting that the chatbot was intended to
provide eztra interaction in the lesson—in order not to compromise the learning
experience of students in the control group—the chatbot was indeed designed
to not really be necessary. However, in answers to the question that specifically
asked students in the treatment condition about the chatbot, eight of the 13
students who responded provided a positive comment. The fact that the chat-
bot was appreciated by the majority of students who were exposed to it is a
promising result.
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Nevertheless, it is important to acknowledge that the repetitiveness of the
questions posed by the chatbot negatively affected the learning experience, as
made evident in the qualitative feedback provided by the students in the treat-
ment group. These repeated questions were a result of the chatbot’s configu-
ration. More specifically, the chatbot’s prompt (see Section 4.1) included the
following instructions: After each response, the chatbot gives the student one or
two options to continue the conversation. Although this strategy was effective
in engaging students, it failed to capture the moment when the student wanted
to stop interacting with the chatbot. Thus, this strategy quickly backfired and
resulted in some students referring to the chatbot as pushy and annoying. This
result sheds light on how what may appear to be a minor configuration detail
could potentially have a negative impact on the user experience when using
powerful LLMs.

Third, a close inspection of Fig. 7 shows that the average time spent in the
phases that included chatbots (Styling, Best Practices, Solutions, and Chatbots)
was actually longer for the control condition than for the treatment condition.
While these differences are not significant, the consistency of these results across
the four phases stands out. We would have expected students in the treatment
condition to spend more time in these phases due to the extra interaction with
the chatbot that students in the control condition—who only had to read the
accompanying text—did not have to engage with. However, it could be the case
that students in the treatment condition favored focusing on the explanation
provided by the chatbot, which served as an interactive summary of what was
contained in the text. Hence, the chatbot might have provided a faster way of
learning the issue that was captured in each code snippet or simply a way to
guide a student’s focus through the exercise.

It is also worth pointing out that the results of the UEQ show that the
differences between conditions were most significant for the novelty dimension.
For this dimension, the ratings provided by students in the treatment condition
are significantly higher than those provided by students in the control condition
at the p < 0.1 level. The need for educational technologies to remain novel and
attractive is particularly relevant in light of the rapidly changing technological
landscape. Learning technologies and digital education platforms that achieve
positive usability results in these dimensions are likely to have an advantage in
attracting learners and keeping learners engaged.

With respect to the exchanges held between students in the treatment group
and the chatbot, a first positive result is that conversations were all on topic. The
fact that about a third of conversations consisted of five or more messages is an
indicator that students took advantage of the opportunity to interact with the
chatbot. However, conversations often lacked naturalness. As discussed above,
this was caused by the fact that the chatbot was configured to end its messages
with a question that was supposed to encourage the student to reply. This caused
problems when the student wanted to end the conversation. Finally, the formu-
lation of the cue appeared to have had an effect on whether student responses
were short or long. While type I cues asking the student just to agree or disagree
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did not lead to long answers, type II cues asking the student to reflect were
better at encouraging students to provide more in-depth answers.

7 Conclusion

In this paper, we presented the design of an architecture aimed at supporting
developers in education in integrating LLM-powered chatbots into digital educa-
tion platforms. We then conducted a case study comprising a between-subjects
controlled experiment with 26 software engineering students. Half of the students
completed the lesson with support from Graasp Bot—an educational chatbot
embedded in an application implemented following our architecture—while the
other half completed the lesson without support from the chatbot. Although
there were no significant differences across the aspects considered in our evalua-
tion, the results of our study can help optimize our prompt engineering strategy
and provide useful examples for researchers and educators looking to incorpo-
rate LLM-powered chatbots into their practice. Furthermore, given that learning
gains were not impacted by the presence of the chatbot, these findings reinforce
the idea that educational chatbots could serve to provide additional information
when educators are not available.

It is also important to note that there are a number of limitations that could
have affected our findings. First, while our sample size was appropriate for our
mixed methods experiment, expanding our study to include more subjects could
help in the detection of differences between conditions, especially in pedagogical
scenarios with shorter durations, where differences could be more subtle than ex-
pected. Similarly, increasing exposure by conducting semester-long or longitudi-
nal studies could also serve to better identify the differences that emerge between
conditions. Second, exploring this interaction strategy with different pedagogical
scenarios and subject matter could help generalize the applicability of our ar-
chitecture. Finally, incorporating standardized instruments to measure learning
gains, self-reflection, and engagement could help reveal more interpretable re-
sults regarding how LLM-powered chatbots can provide support in educational
contexts.
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